Búsqueda avanzada

PERCY BRAULIO FERNANDEZ SANCHEZ

PERCY BRAULIO FERNANDEZ SANCHEZ

PERCY BRAULIO FERNANDEZ SANCHEZ

Doctor en Ciencias (INSTITUTO DE MATEMATICAS PURAS E APLICADAS)
DOCENTE ORDINARIO - PRINCIPAL
Docente a tiempo completo (DTC)
Departamento Académico de Ciencias - Sección Matemáticas

Investigaciones

Se encontraron 19 investigaciones

2018 - 2020

Teoría geométrica de los campos vectoriales bidimensionales

La teoría de los sistemas dinámicos contiene herramientas que permiten la comprensión cualitativa y cuantitativa de los modelos en las ciencias experimentales. La finalidad de este proyecto es avanzar en el conocimiento de estos sistemas poniendo especial énfasis en cuatro partes complementarias: (A) Campos vectoriales polinomiales en el plano complejo bidimensional (B) Simetrías de foliaciones holomorfas en el plano complejo bidimensional (C) Sistemas autónomos estudio local y global (D) Difeomorfismos en dimensiones bajas

Participantes:

Instituciones participantes:

  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Dirección de Gestión de la Investigación (DGI) (Financiadora)
2019

Sobre el número de Tjurina de una foliación

Estudiaremos el número de Tjurina de las foliaciones, intentando generalizar al caso de foliaciones los resultados ya obtenidos sobre el número de Tjurina para curvas de Bayer y Hefez [B-Hef].

Participantes:

Instituciones participantes:

  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Dirección de Gestión de la Investigación (DGI) (Financiadora)
2017 - 2018

Foliaciones inducidas por acciones holomorfas del grupo afin

Para las foliaciones holomorfas singulares de codimensión uno inducidas por acciones del grupo afín, de la línea compleja, sobre el espacio afín complejo de dimensión tres. Proponemos estudiar sus singularidades que se linealizan globalmente en el espacio afín y caracterizar la existencia de separatrices para estas foliaciones.

Participantes:

Instituciones participantes:

  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Dirección de Gestión de la Investigación (DGI) (Financiadora)
  • INSTITUTO DE MATEMATICA PURA Y APLICADA (Financiadora)
  • UNIVERSIDAD DE VALLADOLID (Financiadora)
2015 - 2016

Estructura transversal de singularidades dicriticas

Dada una foliación dicritica de codimensión uno en (C3,0) tal que las foliaciones inducidas en las componentes irreducibles del divisor excepcional [C1], transversales a la foliación reducida, admiten integral primera meromorfa. Nosotros proponemos estudiar las condiciones necesaria y suficientes para que la foliación tenga integral primera meromorfa.

Participantes:

Instituciones participantes:

  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Dirección de Gestión de la Investigación (DGI) (Financiadora)
  • INSTITUTO DE MATEMATICA PURA Y APLICADA (Financiadora)
  • UNIVERSIDAD DE VALLADOLID (Financiadora)
2014 - 2015

Foliaciones holomorfas de codimensión uno nilpotentes

Las foliaciones holomorfas de codimensión uno nilpotentes en (C3, 0), definidas por XdX+..., siempre tienen una superficie invariante (separatriz) del tipo S: Z2+f(X,Y)=0 [FMN], [L] en nuestro articulo [FM] nosotros estudiamos este tipo de foliaciones suponiendo que la superficie S es casi ordinaria y la foliación es del tipo superficie generalizada [FM1]. Nosotros complementaremos este estudio en el caso que la foliación no es superficie generalizada, este tipo de foliaciones admiten las singularidades mas complicadas de las foliaciones holomorfas: dicriticas y sillas nodos [CC], [C].

Participantes:

Instituciones participantes:

  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Dirección de Gestión de la Investigación (DGI) (Financiadora)
  • Instituto de Matematicas Puras y Aplicadas (Financiadora)
  • UNIVERSIDAD DE VALLADOLID (Financiadora)
2014 - 2015

Foliaciones holomorfas y equivalencias de tipo bi-Lipschitz

El presente proyecto propone el estudio de la dinámica local de un germen de foliación holomorfa singular, principalmente en dimensión compleja 2. El objetivo es realizar un aporte a la clasificación analítico-topológica de estos objetos, así como a la comprensión de la dinámica de los mismos.

Participantes:

Instituciones participantes:

  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Dirección de Gestión de la Investigación (DGI) (Financiadora)
  • IMPA (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Departamento Académico de Ciencias (Financiadora)
  • Universidad de Valladolid (Financiadora)
  • Universidade Federal de Minas Gerais (Financiadora)
  • Universidade federal de Minas Gerais (Financiadora)
  • Universidade Federal Fluminense (Financiadora)
2013

Campos Logarítmicos

Nosotros investigaremos las posibles formas normales de los campos logaritmos de curvas que no son casi homogéneos, esto es, hallaremos coordenadas analíticas, mediante las cuales estos campos logarítmicos tienen una expresión simple y única.

Participantes:

Instituciones participantes:

  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Dirección de Gestión de la Investigación (DGI) (Financiadora)
  • Universidad Estadual de Maringa (Financiadora)
  • Universidad de Valladolid (Financiadora)
2013

Estabilidad asintótica y estudio de órbitas periódicas vía la teoría del promedio

La teoría de los sistemas dinámicos tiene herramientas que permiten comprender los modelos en las ciencias experimentales. Muchos de ellos son inducidos por ecuaciones diferenciales. La finalidad de este proyecto es avanzar en el conocimiento de estos sistemas con énfasis en: (a) Teoría cualitativa de las ecuaciones diferenciales: Centros, función periodo, ciclos límites y método del promedio. (b) Estabilidad asintótica y variedades abiertas: Estabilidad asintótica, variedades abiertas, derivada covariante.

Participantes:

Instituciones participantes:

  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Dirección de Gestión de la Investigación (DGI) (Financiadora)
  • INTERNATIONAL CENTRE OF THEORETICAL PHYSICS, TRIESTE (Financiadora)
  • UNIVERSIDAD AUTÓNOMA DE BARCELONA (Financiadora)