Se encontraron 9 investigaciones
El presente proyecto propone el estudio de la dinámica local de un germen de foliación o campo analítico en las cercanías de una singularidad. Trataremos principalmente sistemas en dimensión 2 y 3 y el objetivo es realizar un aporte a la clasificación analítico-topológica de estos sistemas así como a la comprensión de la dinámica de estos objetos
Participantes:
Instituciones participantes:
Dada una foliación dicritica de codimensión uno en (C3,0) tal que las foliaciones inducidas en las componentes irreducibles del divisor excepcional [C1], transversales a la foliación reducida, admiten integral primera meromorfa. Nosotros proponemos estudiar las condiciones necesaria y suficientes para que la foliación tenga integral primera meromorfa.
Participantes:
Instituciones participantes:
Las foliaciones holomorfas de codimensión uno nilpotentes en (C3, 0), definidas por XdX+..., siempre tienen una superficie invariante (separatriz) del tipo S: Z2+f(X,Y)=0 [FMN], [L] en nuestro articulo [FM] nosotros estudiamos este tipo de foliaciones suponiendo que la superficie S es casi ordinaria y la foliación es del tipo superficie generalizada [FM1]. Nosotros complementaremos este estudio en el caso que la foliación no es superficie generalizada, este tipo de foliaciones admiten las singularidades mas complicadas de las foliaciones holomorfas: dicriticas y sillas nodos [CC], [C].
Participantes:
Instituciones participantes:
El presente proyecto propone el estudio de la dinámica local de un germen de foliación holomorfa singular, principalmente en dimensión compleja 2. El objetivo es realizar un aporte a la clasificación analítico-topológica de estos objetos, así como a la comprensión de la dinámica de los mismos.
Participantes:
Instituciones participantes:
El lenguaje de foliaciones y webs delimita la forma moderna de tratar con la dinámica y la geometría de las ecuaciones diferenciales complejas. La materia central de este proyecto es el estudio de foliaciones y webs en cercanías infinitesimalmente próximas de las singularidades. El estudio se centra en dimensión 2 y 3 y se direcciona en la busqueda de un teorema de tipo Poincaré-Bendixson infinitesimal. Como aplicaciones inmediatas se tratará la geometría y la dinámica global de foliaciones y webs y sus curvas polares.
Participantes:
Instituciones participantes:
Participantes:
Instituciones participantes:
Participantes:
Instituciones participantes:
La teoría de los sistemas dinámicos desarrolla herramientas que permiten la comprensión cualitativa y cuantitativa de los fenómenos que aparecen en el estudio de diversas áreas de la ciencia y la técnica. La finalidad de este proyecto es contribuir al conocimiento de estos sistemas poniendo especial énfasis en los siguientes tópicos complementarios: (A) Foliaciones formales y puntos fijos de biholomorfismos en dimensión compleja dos. (B) Distribuciones e integrales primeras en variedades complejas. (C) Distribución central de difeomorfismos parcialmente hiperbólicos en tres-variedades. (D) Flujos regulares en dimensiones bajas.
Participantes:
Instituciones participantes: