Búsqueda avanzada

JORGE ANDRES GUERRA TORRES

JORGE ANDRES GUERRA TORRES

JORGE ANDRES GUERRA TORRES

Optische Charakterisierung und thermische Aktivierung von Tb-dotierten amorphen SiC, AlN und SiN Dünnfilmen (FRIEDRICH ALEXANDER UNIVERSITAT ERLANGEN NURNBERG) y Doctor en Física (PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU)
DOCENTE ORDINARIO - ASOCIADO
Docente a tiempo completo (DTC)
Departamento Académico de Ciencias - Sección Física

Investigaciones

Se encontraron 20 investigaciones

2019 - 2021

Production and opto-electronic characterization of multifunctional semiconductor materials for applications in solar cells and electroluminescent devices

The present proposal aims to fund the research activities of the group and the laboratory for the next two years, i.e. fund materials, conferences and research stages. These activities are align to the research of rare earth doped widebandgap semiconductors for up and down conversion layers, the study of metalorganic triple cation perovskites and passivation layers for photovoltaic applications, as well as the production and characterization of transparent conductive oxides doped with rare earths and transition metal ions for down shift layers. With exception of the perovskites, the materials are growth by sputtering and characterized by means of FTIR, Raman, PL and CL spectroscopy, Van Der Pauw, capacitance-voltage, XRD and Variable Angle Spectral Ellipsometry (VASE). The materials under study are SiC and AlN doped with Tb and Yb, for up/down conversion layers. AlN for surface passivation of Si wafers as well as Liquid Phased Crystalized Si (LPC-Si) for thin film solar cells. ITO and AZO doped with Tb and Tm, for multifunctional light emitting materials and downshift layers, and doped with Cr for acetone sensing, and perovskites. In particular, the production and part of the characterization of the perovskites and LPC-Si are perform in collaboration with the Helmholz Zentrum Berlin (HZB), Germany, in the framework of a memorandum of understanding. The rest of materials are fully produced and characterized in our laboratories. The main objectives of the project are to study: The thermal activation of rare doped materials and excitation mechanism after thermal annealing treatments. The effect of annealing treatments and doping with rare earths and transition metal ions on the electrical conductivity and optical transparency of ITO and AZO. The passivation capabilities of AlN and other dielectric thin films in order to improve the efficiency of Si based solar cells.

Participantes:

Instituciones participantes:

  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Dirección de Gestión de la Investigación (DGI) (Financiadora)
2018 - 2021

Caracterización, modelado y estudio del comportamiento de diferentes generaciones de tecnologías fotovoltaicas frente a las condiciones climáticas del Perú

Actualmente, el gobierno peruano está preparando una reforma de la política energética nacional que permita incrementar el porcentaje de energía renovable al mix energético del país. Perú es el país del Sol y la tecnología fotovoltaica (FV). Por las ventajas técnico-económicas que ofrece, es la técnica renovable de generación de energía eléctrica que mayor tasa de crecimiento ha presentado en la última década. Actualmente, el mercado ofrece múltiples productos comerciales de diferentes tecnologías FV. Sin embargo, aún no existen estudios científicos sobre el verdadero comportamiento particular de cada una de ellas en el país considerando sus diversos climas. En este proyecto se investigará el desempeño de diferentes generaciones de tecnologías de módulos FV. Para ello, será necesario la realización de una extensa campaña experimental en la cual, además de la obtención y análisis de la curva característica de corriente-voltaje del módulo, será necesario registrar todas las variables meteorológicas de interés (irradiancia, distribución espectral, temperatura, humedad, polvo, etc.) que afectan a su producción energética, así como a la degradación de los mismos. A partir de los resultados experimentales, se validarán modelos matemáticos y físicos los cuales se optimizarán para las condiciones climatológicas de la región de Lima. En este sentido, se podrá predecir la producción de energía FV para estas condiciones. El resultado esperado conducirá a entender mejor el rendimiento y comportamiento de cada tecnología. Se pretende que la metodología aplicada y modelos desarrollados puedan replicarse en las distintas zonas climáticas del Perú. Además, los datos obtenidos facilitarán los estudios de ahorro energético y económico. Finalmente, los resultados serán de interés para el sector energético en el marco de su actual y futura transición a energías renovables, ya que motivarán e impactarán la selección de las tecnologías fotovoltaicas adecuadas para el clima peruano.

Participantes:

Instituciones participantes:

  • CONCYTEC - FONDECYT (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - DEPARTAMENTO ACADEMICO DE Ciencias - Sección de Física - Grupo MatER (Financiadora)
  • UNIVERSIDAD DE JAEN - Centro de Estudios Avanzados en Energía y Medio Ambiente (Financiadora)
2018 - 2021

Evaluación energética y técnico-económica de la generación de energía eléctrica renovable con nuevas tecnologías fotovoltaicas en diferentes zonas climáticas del Perú.

Actualmente, el gobierno peruano está preparando una reforma de la política energética nacional que permita incrementar el porcentaje de energía renovable a la producción energética del país. El mercado ofrece múltiples productos comerciales de diferentes tecnologías fotovoltaicas (FV). Sin embargo, aún no existen estudios científicos sobre el verdadero comportamiento particular de cada una de estas en el país, considerando sus diversos climas. Cada año nuevas tecnologías de mayor eficiencia y menor costo entran al mercado FV. En este sentido, las universidades de las regiones de Lima (PUCP y UNI), Arequipa (UNSA), de Tacna (UNJBG) y de Amazonas (UNTRM) investigarán en conjunto el rendimiento energético, técnico- y socio-económico de sistemas de nuevas tecnologías FV. Este proyecto busca estudiarlas y evaluarlas bajo las condiciones climáticas en el lugar de estudio. Los estudios en aspectos de rendimiento energético también facilitarán la identificación de efectos de degradación. La investigación se realizará a nivel de sistema FV conectado a la red para estudios de rendimiento energético y de modelamiento para la predicción de la producción energética. Estos serán acompañados por estudios a nivel de módulos para la investigación de las propiedades fundamentales de las diferentes tecnologías y como son afectadas por las variables meteorológicas, Finalmente, a partir de los resultados energéticos, se realizará un estudio de los potenciales impactos técnico-socioeconómicos, así como de los beneficios medioambientales que generaría la intervención FV en el lugar de estudio con cada tecnología. Mediante las herramientas de simulación y análisis de datos que se desarrollen, se realizará una estimación de la energía eléctrica generada, así como un estudio de rentabilidad económica.

Participantes:

  • Juan De la Casa Higueras (Co-Investigador)
  • Rafael Espinoza (Co-Investigador)
  • Emilio Muñoz Ceron (Co-Investigador)
  • Manfred Horn (Co-Investigador)
  • Mónica Gomez (Co-Investigador)
  • Juan Ernesto Palo (Co-Investigador)
  • Miguel Angel Barrena (Co-Investigador)
  • Carlos Armando Polo (Co-Investigador)
  • Wilber Francisco Aragonéz (Co-Investigador)
  • JAN AMARU PALOMINO TOFFLINGER (Investigador principal)
  • JORGE ANDRES GUERRA TORRES (Co-Investigador)
  • ROLF GRIESELER (Co-Investigador)

Instituciones participantes:

  • CITEenergÿ¿ÿ-a - Silicon Technology - Laboratorio del CITEenergÿ¿ÿ-a (Financiadora)
  • CONCYTEC - FONDECYT (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Departamento Académico de Ciencias (Financiadora)
  • UNIVERSIDAD DE JAEN - Centro de Estudios Avanzados en Energÿ¿ÿ-a y Medio Ambiente (Financiadora)
  • UNIVERSIDAD NACIONAL DE INGENIERIA - Centro De Energÿ¿ÿ-as Renovables (Financiadora)
  • UNIVERSIDAD NACIONAL DE JULIACA - Escuela de Ingenieria en Energias Renovables (Financiadora)
  • UNIVERSIDAD NACIONAL DE SAN AGUSTIN - Escuela Profesional de Fÿ¿ÿ-sica (Financiadora)
  • UNIVERSIDAD NACIONAL JORGE BASADRE GROHMAN - Centro de Energÿ¿ÿ-as Renovables Tacna (Financiadora)
  • UNIVERSIDAD NACIONAL TORIBIO RODRIGUEZ DE MENDOZA DE AMAZONAS - Facultad de Ingenierÿ¿ÿ-a Civil y Ambiental (Financiadora)
2018 - 2021

Primer elipsometro espectral de ángulo variable en el Perú para la caracterización de materiales multifuncionales

--

Participantes:

Instituciones participantes:

  • BANCO MUNDIAL - -- (Financiadora)
  • FONDECYT - -- (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - física (Financiadora)
  • UNSAA - -- (Financiadora)
2018 - 2021

Producción y caracterización de foto-electrodos a base de carburo de silicio amorfo hidrogenado para la producción de hidrogeno usando luz solar

Materiales con un amplio ancho de banda como el SiC, TiO2 y AlN son de creciente interés. Esto se debe a que permiten la transmisión de luz en el espectro visible permitiendo aplicaciones opto-electrónicas. Existe un particular interés en el estudio del SiC y TiO2 para aplicaciones foto-catalíticas. Estos materiales exhiben una alta resistencia a la corrosión en medios catalíticos en contraste con los semiconductores usuales como GaAs y Si. Actualmente es posible obtener SiC amorfo hidrogenado mediante RF sputtering en una atmosfera rica en hidrógeno, o por PECVD usando una mezcla de SiH4 y CH4. El carburo de silicio amorfo hidrogenado (a-SiC:H) puede ser usado como foto-electrodo en dispositivos foto electro-químicos para la producción de hidrógeno por electrólisis del agua utilizando luz solar. El presente proyecto tiene el objetivo de producir películas delgadas de a-SiC:H mediante RF sputtering y estudiar el proceso de fotocorrosión de dichas películas en medios acuosos frente a su uso como fotoelectrodo para la producción de hidrógeno por electrólisis del agua. Las técnicas electroquímicas a emplear involucran curvas de corriente potencial, espectroscopía de impedancia electroquímica así como la microbalanza electroquímica de cristal de cuarzo. Adicionalmente los cambios en la morfología de la superficie, estructura y propiedades ópticas de dichos materiales serán caracterizados a través de diversas técnicas AFM, Raman y espectroscopía de transmisión UV-VIS.

Participantes:

Instituciones participantes:

  • CONCYTEC - - (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Departamento Académico de Ciencias (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Instituto de Corrosión y Protección (Financiadora)
2018 - 2020

Nuevos materiales para aplicaciones fotovoltaicas: Perovskita y tierras raras

"Estancias en Cooperación con DAAD Alemania" Convocatoria 2017 Proyecto de investigación científica colaborativo con Helmholtz-Zentrum Berlin (HZB). La investigación fotovoltaica tiene dos objetivos principales: Reducir el costo de las celdas solares y/o mejorar su eficiencia en la conversión de energía. El propósito de este proyecto cooperativo es contribuir a ambos objetivos mediante la investigación de nuevos materiales fotovoltaicos de perovskita y tierras raras. La perovskita ha surgido como un material muy prometedor y de bajo costo para películas absorbentes en celdas solares. En particular, las llamadas celdas solares ¿tándem¿ de silicio/perovskita, compuestas de capas superpuestas de cada material, muestran gran potencial para superar las actuales celdas solares de silicio de unión única. El HZB desarrolla celdas solares de silicio de hetero-unión, que sirven como la base de la celda tándem. Uno de los principales desafíos es sintonizar la energía del ancho de banda de la perovskita para optimizar eléctrica y ópticamente la estructura tándem. El objetivo del proyecto es obtener conocimiento preciso del índice de refracción complejo, ancho de banda óptico y fotoconductancia de la capa de perovskita. Un segundo enfoque para superar el límite de la eficiencia de una celda solar es incorporar procesos de conversión descendente y ascendente de luz. Las energías de fotón mayores al ancho de banda de la capa absorbente son perdidas parcialmente por termalización, y las energías menores son perdidas totalmente por falta de absorción, lo cual limita la eficiencia de las celdas solares de unión única. El Grupo de Ciencia de los Materiales de la PUCP está investigando las propiedades ópticas y luminescentes de las tierras raras de terbio (Tb) e yterbio (Yb). El objetivo del proyecto es demostrar los procesos de conversión descendente y/o ascendente de las tierras raras en un dispositivo fotovoltaico.

Participantes:

Instituciones participantes:

  • Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (FONDECYT) - FONDECYT (Financiadora)
  • HELMHOLTZ-ZENTRUM BERLIN - Institue for Silicon Photovoltaics (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - DAC, Sección Física (Financiadora)
2018 - 2019

Effect of terbium doping on the optical, electrical and luminescence properties of ITO and AZO transparent conductive thin films

The effect of terbium doping on the optical, electrical and light emission properties of sputtered indium tin oxide and aluminum doped zinc oxide thin films will be investigated for different annealing conditions and dopant concentrations. The films will be prepared by RF magnetron sputtering maintaining a high transmittance in the ultraviolet, visible and near infrared spectral regions and a fairly low sheet resistance. In order to induce the activation of terbium luminescent centers, the films will be annealed up to 700°C under distinct atmospheres, high vaccum, air and oxygen. The variation of the terbium related integrated light emission intensity versus de annealing temperature and the impact on the optical and electrical properties are of main interest in this project. Optical transmittance, electrical resistivity and X-ray diffractometry will be registered after each annealing process to assess the compromise between the achieved light emission intensity and optical and electrical properties.

Participantes:

Instituciones participantes:

  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Departamento Académico de Ciencias (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Dirección de Gestión de la Investigación (DGI) (Financiadora)
2017

Bandgap engineering and passivation properties of amorphous SiNx and SiNx:O:H grown by RF-magnetron sputtering

Amorphous wide-bandgap semiconductors have attracted attention in the past decades. The reasons for this are twofold. First, these materials are suitable for applications in opto-electronic devices. For instance, a-SiC:H is currently a candidate to serve as photo-electrode in photo-electrochemical devices for hydrogen production [Zhu10]. Additionally, the interface between c-Si and amorphous silicon oxides/nitrides is of profound interest due to its numerous applications in microelectronics and energy conversion devices. Second, the modeling of several properties is very challenging and also they are very different from their crystalline counterpart. One important difference between amorphous and crystalline materials lay in the band-tail states. The origin of these tail states and how they merge into the extended conduction and valence band states is a still an unresolved issue. Band-to-band transitions are responsible for the main absorption and are the primary measure of the optical bandgap energy. Currently, the most prominent model for the fundamental absorption due to its easy implementation is the Tauc approach from which the Tauc-gap is calculated. However it is sensitive to both, band-tails states and the separation of the mobility edges. Furthermore it is not possible to systematically determine the fundamental absorption region from single absorption measurements due to the presence of the large band-tail states which overlap to the fundamental absorption in the typical measured spectral region. In the present one year project we attempt to produce and characterize a-SiNx and a-SiNx:O:H in the whole nitrogen composition range. Motivated by the recent publications [Gue16, Lie15] and [Sei11], we aim to tailor the optical bandgap of this material by manipulating its stoichiometry and then tune its electronic and optical properties by the incorporation of hydrogen and oxygen during the deposition process in order to improve its passivation qualities.

Participantes:

Instituciones participantes:

  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Departamento Académico de Ciencias (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Departamento Académico de Ingeniería (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Dirección de Gestión de la Investigación (DGI) (Financiadora)