Se encontraron 6 investigaciones en el año 2018
Actualmente, el gobierno peruano está preparando una reforma de la política energética nacional que permita incrementar el porcentaje de energía renovable a la producción energética del país. El mercado ofrece múltiples productos comerciales de diferentes tecnologías fotovoltaicas (FV). Sin embargo, aún no existen estudios científicos sobre el verdadero comportamiento particular de cada una de estas en el país, considerando sus diversos climas. Cada año nuevas tecnologías de mayor eficiencia y menor costo entran al mercado FV. En este sentido, las universidades de las regiones de Lima (PUCP y UNI), Arequipa (UNSA), de Tacna (UNJBG) y de Amazonas (UNTRM) investigarán en conjunto el rendimiento energético, técnico- y socio-económico de sistemas de nuevas tecnologías FV. Este proyecto busca estudiarlas y evaluarlas bajo las condiciones climáticas en el lugar de estudio. Los estudios en aspectos de rendimiento energético también facilitarán la identificación de efectos de degradación. La investigación se realizará a nivel de sistema FV conectado a la red para estudios de rendimiento energético y de modelamiento para la predicción de la producción energética. Estos serán acompañados por estudios a nivel de módulos para la investigación de las propiedades fundamentales de las diferentes tecnologías y como son afectadas por las variables meteorológicas, Finalmente, a partir de los resultados energéticos, se realizará un estudio de los potenciales impactos técnico-socioeconómicos, así como de los beneficios medioambientales que generaría la intervención FV en el lugar de estudio con cada tecnología. Mediante las herramientas de simulación y análisis de datos que se desarrollen, se realizará una estimación de la energía eléctrica generada, así como un estudio de rentabilidad económica.
Participantes:
Instituciones participantes:
La presente propuesta se centra en el estudio de películas delgadas de materiales multifuncionales. Entendiéndose, que un material multifuncional es aquel al que se le pueden añadir nuevas propiedades sin perder sus propiedades originales. En este sentido, esta investigación busca evaluar el efecto del dopaje con tierras raras (TR) y metales de transición (MT) en las propiedades opto-electrónicas de óxidos transparentes conductores para aplicaciones en dispositivos electroluminiscentes y dispositivos sensores de gases, respectivamente. En particular, los materiales multifuncionales que se pretenden estudiar son el óxido de indio dopado con estaño (ITO), el óxido de zinc dopado con aluminio (AZO) y dopados con tulio (ITO:Tm y AZO:Tm) y cromo (ITO:Cr y AZO:Cr).
Participantes:
Instituciones participantes:
Materiales con un amplio ancho de banda como el SiC, TiO2 y AlN son de creciente interés. Esto se debe a que permiten la transmisión de luz en el espectro visible permitiendo aplicaciones opto-electrónicas. Existe un particular interés en el estudio del SiC y TiO2 para aplicaciones foto-catalíticas. Estos materiales exhiben una alta resistencia a la corrosión en medios catalíticos en contraste con los semiconductores usuales como GaAs y Si. Actualmente es posible obtener SiC amorfo hidrogenado mediante RF sputtering en una atmosfera rica en hidrógeno, o por PECVD usando una mezcla de SiH4 y CH4. El carburo de silicio amorfo hidrogenado (a-SiC:H) puede ser usado como foto-electrodo en dispositivos foto electro-químicos para la producción de hidrógeno por electrólisis del agua utilizando luz solar. El presente proyecto tiene el objetivo de producir películas delgadas de a-SiC:H mediante RF sputtering y estudiar el proceso de fotocorrosión de dichas películas en medios acuosos frente a su uso como fotoelectrodo para la producción de hidrógeno por electrólisis del agua. Las técnicas electroquímicas a emplear involucran curvas de corriente potencial, espectroscopía de impedancia electroquímica así como la microbalanza electroquímica de cristal de cuarzo. Adicionalmente los cambios en la morfología de la superficie, estructura y propiedades ópticas de dichos materiales serán caracterizados a través de diversas técnicas AFM, Raman y espectroscopía de transmisión UV-VIS.
Participantes:
Instituciones participantes:
La formación de recubrimientos de Zinc (Zn) y aleaciones intermetálicas de Zn es una de las técnicas de procesamiento comerciales más importantes para la protección de componentes de ferrosos expuestos a medios corrosivos. Estos recubrimientos son usados para mejorar la resistencia a la corrosión de superficies ferrosas en medios acuosos a través de dos mecanismos: 1. Protección tipo barrera y 2. Protección galvánica. En la protección tipo barrera, el recubrimiento de Zn separa el sustrato del ambiente corrosivo, por lo que será el primero en corroerse antes de que el medio alcance el sustrato. En la protección galvánica, el Zn es un metal menos anódico que el hierro (Fe) por lo que se corroerá como sacrificio para proteger el sustrato incluso si parte de este es expuesto al ambiente. Los procesos de galvanizado típicamente usados en la industria son galvanizado por inmersión en caliente (hot dip galvanizing), pulverizado/rociado de Zn caliente (thermal spray galvanizing), galvanoplastia (electroplating) y termodifusión (sherardizing). Dependiendo de la aplicación, volumen y acabado, se estila usar un método u otro. Las aplicaciones cubren áreas, en tecnología aeroespacial, automóvil, construcción, decoración, marina, minería, defensa, energía y renovables, petróleo, gas y telecomunicaciones, entre otras. El objetivo de este proyecto ha sido desarrollar un prototipo de proceso de termodifusión que permita el galvanizado de pernos de construcción con un mejor acabado y desempeño de protección que el de galvanizado por inmersión. En esta memoria técnica se detallan los procedimientos experimentales realizados sobre pernos galvanizados por inmersión en caliente, así como por termodifusión, de acuerdo con variantes realizadas a este último proceso. Esto con el fin de evaluar y contrastar el desempeño de las piezas galvanizadas y buscar estrategías de optimización del nuevo proceso
Participantes:
Instituciones participantes:
"Estancias en Cooperación con DAAD Alemania" Convocatoria 2017 Proyecto de investigación científica colaborativo con Helmholtz-Zentrum Berlin (HZB). La investigación fotovoltaica tiene dos objetivos principales: Reducir el costo de las celdas solares y/o mejorar su eficiencia en la conversión de energía. El propósito de este proyecto cooperativo es contribuir a ambos objetivos mediante la investigación de nuevos materiales fotovoltaicos de perovskita y tierras raras. La perovskita ha surgido como un material muy prometedor y de bajo costo para películas absorbentes en celdas solares. En particular, las llamadas celdas solares ¿tándem¿ de silicio/perovskita, compuestas de capas superpuestas de cada material, muestran gran potencial para superar las actuales celdas solares de silicio de unión única. El HZB desarrolla celdas solares de silicio de hetero-unión, que sirven como la base de la celda tándem. Uno de los principales desafíos es sintonizar la energía del ancho de banda de la perovskita para optimizar eléctrica y ópticamente la estructura tándem. El objetivo del proyecto es obtener conocimiento preciso del índice de refracción complejo, ancho de banda óptico y fotoconductancia de la capa de perovskita. Un segundo enfoque para superar el límite de la eficiencia de una celda solar es incorporar procesos de conversión descendente y ascendente de luz. Las energías de fotón mayores al ancho de banda de la capa absorbente son perdidas parcialmente por termalización, y las energías menores son perdidas totalmente por falta de absorción, lo cual limita la eficiencia de las celdas solares de unión única. El Grupo de Ciencia de los Materiales de la PUCP está investigando las propiedades ópticas y luminescentes de las tierras raras de terbio (Tb) e yterbio (Yb). El objetivo del proyecto es demostrar los procesos de conversión descendente y/o ascendente de las tierras raras en un dispositivo fotovoltaico.
Participantes:
Instituciones participantes:
The effect of terbium doping on the optical, electrical and light emission properties of sputtered indium tin oxide and aluminum doped zinc oxide thin films will be investigated for different annealing conditions and dopant concentrations. The films will be prepared by RF magnetron sputtering maintaining a high transmittance in the ultraviolet, visible and near infrared spectral regions and a fairly low sheet resistance. In order to induce the activation of terbium luminescent centers, the films will be annealed up to 700°C under distinct atmospheres, high vaccum, air and oxygen. The variation of the terbium related integrated light emission intensity versus de annealing temperature and the impact on the optical and electrical properties are of main interest in this project. Optical transmittance, electrical resistivity and X-ray diffractometry will be registered after each annealing process to assess the compromise between the achieved light emission intensity and optical and electrical properties.
Participantes:
Instituciones participantes: