Búsqueda avanzada

FERDINAND EDGARDO PINEDA ANCCO

FERDINAND EDGARDO PINEDA ANCCO

FERDINAND EDGARDO PINEDA ANCCO

Magíster en Informática con mención en Ciencias de la Computación, PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU

Ver todos los grados

Magister en Telecomunicaciones (UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS)

Ingeniero Electronico
DOCENTE CONTRATADO - CONTRATADO
Tiempo parcial por asignaturas (TPA)
Departamento Académico de Ingeniería- Sección Ing. Mecatrónica

Publicaciones

Se encontraron 6 publicaciones

PINEDA, F. E.(2024). A Comprehensive Review of Artificial Intelligence for Water Quality Prediction in Amazonian Countries: Limitations and Perspectives. SSRN Heliyon.
CÁCERES, E.; PINEDA, F. E.; BELTRAN, C. A.(2024). Road Multilabel Semantic Segmentation from Satellite Images Using Convolutional Neural Networks. En ANDESCON 2024, Cusco, Perú, 2024.. (pp. 1 - 8). IEEE. Recuperado de: https://ieeexplore.ieee.org/abstract/document/10755732
BELTRAN, C. A. y PINEDA, F. E.(2024). Spanish Historical Handwritten Text Recognition with Deep Learning. Spanish Historical Handwritten Text Recognition with Deep Learning.
PINEDA, F. E.(2023). Classification Model Based on Deep Learning with Hybrid Loss Function for Trout Freshness Analysis. 2023 IEEE Seventh Ecuador Technical Chapters Meeting (ECTM).
PINEDA, F. E.; AYMA, V. A.; BELTRAN, C. A.(2020). A generative adversarial network approach for super-resolution of sentinel-2 satellite images. En 2020 24th ISPRS Congress - Technical Commission I, 31 August 2020 - 2 September 2020. (pp. 9 - 14). International Society for Photogrammetry and Remote Sensing. Recuperado de: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B1-2020/9/2020/
PINEDA, F. E.; AYMA, V. A.; ADUVIRI, R. A.; BELTRAN, C. A.(2020). Super Resolution Approach Using Generative Adversarial Network Models for Improving Satellite Image Resolution. En Annual International Symposium on Information Management and Big Data SIMBig 2019: Information Management and Big Data. (pp. 291 - 298). Springer. Recuperado de: https://link.springer.com/chapter/10.1007/978-3-030-46140-9_27