Se encontraron 2 investigaciones en el año 2011
En el diagnóstico por imágenes, el primer paso es determinar si la imagen en tratamiento es normal o anormal, ello requiere de personal radiólogo altamente calificado/entrenado para poder determinarlo, el principal problema es que este proceso se realiza de forma manual y basada en la subjetividad del especialista. Adicionalmente, en el aspecto médico, gracias al desarrollo de computadoras con mayores capacidades de procesamiento y almacenamiento, hoy se disponen de técnicas altamente sofisticadas de adquisición de imágenes tales como resonancia magnética y tomografía computarizada que pueden producir cientos de imágenes por examen. Actualmente el almacenamiento ya no es un problema, pero el uso adecuado y efectivo de los bancos de imágenes médicas de gran escala todavía es un problema que requiere de una solución innovadora. La implementación de un sistema de pre-selección y clasificación de normalidad de imágenes médicas permitirá incrementar la calidad de diagnóstico por imágenes con soporte computacional, adicionalmente permitirá la disminución de los costos de diagnóstico, viabilizando la realización de telerradiología. Al mismo tiempo el desarrollo de un atlas médico, como resultado complementario, junto a una herramienta inteligente de recuperación de imágenes por contenido incrementará el aprovechamiento de las imágenes médicas almacenadas en los centros hospitalarios de forma más eficiente.
Participantes:
Instituciones participantes:
El proyecto consiste en una nueva forma de diagnóstico de especies mediante el análisis de micrografías digitales obtenidas a partir de muestras visualizadas en microscopio óptico, las cuales son analizadas de forma automática por técnicas de visión computacional que detecta, analiza y diagnostica las especie de parásito que está atacando. Esto es posible gracias al incremento, cada vez mayor, de las capacidades computacionales que nos permite que técnicas de visión artificial y procesamiento de imágenes puedan ser aplicados a este tipo de problemas. Nuestro proyecto está compuesto de un modelo computacional de detección automática de huevos de helmintos, el cual comprende dos etapas: (1) Localización de regiones candidatas (regiones de interés) para lo cual fueron aplicadas técnicas como regiones salientes y morfología; (2) Detección de huevos helmintos mediante plantillas generadas por la técnica Direct Least Square Fitting of Ellipses y Dynamic Time Warping para análisis de similitud entre series. En este proceso de detección se consiguió un acierto de 92%. Una vez detectados los objetos de interés se procede al análisis y extracción de características de los mismos para poder generar el modelo de diagnóstico automático. Para ello se han extraído características geométricas, morfológicas y de textura los cuales son representados mediante medidas numéricas que conforman un vector de 8 características. Se consiguió trabajar con 1036 imágenes de huevos de helmintos de ocho diferentes especies. Este conjunto de imágenes sirvió como base de datos de entrenamiento de los modelos de diagnóstico computacional: Modelo Bayesiano, con el cual se consiguió 93.5% de acierto, y el SVM que permitió alcanzar 94.0% de acierto. Gracias a la tecnología web, fue posible llevar nuestro algoritmos para que trabajen en un servidor web, donde el usuario envía sus imágenes para que sean procesadas por nuestro sistema en tiempo real.
Participantes:
Instituciones participantes: