Búsqueda avanzada

FERMIN FIDEL HERRERA ARAGON

FERMIN FIDEL HERRERA ARAGON

FERMIN FIDEL HERRERA ARAGON

Doctor en Fisica, UNIVERSIDAD DE BRASILIA

Ver todos los grados

Maestría en Física (UNIVERSIDAD DE BRASILIA)

DOCENTE CONTRATADO - CONTRATADO
Docente a tiempo completo (DTC)
Departamento Académico de Ciencias - Sección Física

Investigaciones

Se encontraron 2 investigaciones

2021 - 2025

Ingeniería de Nanomateriales Multifuncionales para Aplicaciones en Contactos Eléctricos Luminiscentes transportes, celdas solares y sensores de gases orgánicos

El objetivo principal de este proyecto es manipular las propiedades de películas delgadas de In2O3-SnO2 y ZnO:Al dopadas con Tm, Tb, Cr y Fe, con el fin de evaluar el efecto que los dopantes tendrían en la luminiscencia, conductividad eléctrica, transparencia óptica y magnética. Así como su desempeño como sensores de acetona bajo iluminación UV y bajas temperaturas de operación. Para esto se depositan las películas con un sistema de pulverización catódica de 3 magnetrones, permitiendo así hacer ingeniería a través de la manipulación de la concentración de los dopantes, temperatura del sustrato, y la activación con tratamientos térmicos después de la deposición. Las propiedades ópticas y rugosidad, serán evaluadas por el único elipsómetro espectral de ángulo variable que existe en el Perú, para temperaturas de la muestra in situ desde la temperatura ambiente hasta 400°C. Las propiedades de emisión de luz serán evaluadas por las técnicas de catodoluminiscencia y fotoluminiscencia. Las propiedades eléctricas serán evaluadas por Efecto Hall y Van Der Pauw, las propiedades magnéticas serán evaluadas por la magnetometría de muestra vibrante. El desempeño como sensores bajo excitación UV será evaluado para distintas concentraciones de acetona y temperaturas de trabajo. Al final del proyecto esperamos haber desarrollado un material multifuncional con las capacidades descritas anteriormente.

Participantes:

Instituciones participantes:

  • FONDECYT - -- (Financiadora)
  • HELMHOLTZ ZENTRUM bERLIN - iNSTITUTE FOR SILICON PHOTOVOLTAICS (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Seción fisica (Financiadora)
  • UNIVERSIDAD DE SAO PAULO - INSTITUTO DE FISICA DE SAO CARLOS (Financiadora)
  • UNIVERSIDAD NACIONAL SAN AGUSTIN - ESCUELA DE FISICA (Financiadora)
  • University Paris-Saclay - gemac (Financiadora)
2021 - 2024

Indirect excitation and luminescence activation mechanisms of rare-earth doped wide bandgap degenerated semiconductors and their impact on the host's optical and electrical properties

The present proposal aims to systematically study thermal activation and host-mediated rare-earth (RE) indirect excitation mechanisms in sputtered Indium Tin Oxide (ITO) and Aluminum doped Zinc Oxide (AZO) thin films embedded with Terbium (Tb) and Thulium (Tm) impurities. These are direct wide bandgap degenerated semiconductors that have the potential to combine low electrical resistivity and high visible optical transmittance, with light emission features, when doped with REs. There are only a few reports where a transparent conductive oxide has been doped with REs. In these cases, very little or no light emission was observed.1¿4 In addition, there is a lack of consensus on the excitation and activation mechanisms of RE-doped, wide-bandgap materials. Here, we develop new dispersion models to describe the absorption edge and complex refractive index considering excitonic effects, coupled to Drude, Lorentz and direct fundamental absorption processes. Our models will be experimentally tested and will serve as a platform to assess the RE indirect excitation mechanism via the formation of bound excitons to RE clusters in these materials. We expect to make the latter excitation mechanism evident by inducing the thermal quenching of the RE-related luminescence in a temperature range in which excitons cannot exist, thus determining the excitonic binding energy for RE clusters with different sizes. The project is aligned with the Dielectric Materials and Films ONR program and we believe it substantially contributes to the U.S. objective of mitigating potential supply disruption and lack of innovation in the area of RE materials. We aim to conduct fundamental research in order to develop novel RE-doped, wide bandgap semiconductor materials with optoelectronic properties that are suitable for applications in the naval, military and defense fields, renewable energies, light emitting and sensing devices, gas sensors and advanced optoelectronics.

Participantes:

Instituciones participantes:

  • Office of naval research - -- (Financiadora)
  • PONTIFICIA UNIVERSIDAD CATOLICA DEL PERU - Departamento de ciencias, seccion física (Financiadora)