Búsqueda avanzada

ITAMAR FRANCO SALAZAR REQUE

ITAMAR FRANCO SALAZAR REQUE

ITAMAR FRANCO SALAZAR REQUE

MAESTRO EN CIENCIAS EN INGENIERIA ELECTRONICA CON MENCION EN PROCESAMIENTO DIGITAL DE SEÑALES E IMÁGENES, UNIVERSIDAD NACIONAL DE INGENIERIA

TITULO PROFESIONAL DE INGENIERO DE TELECOMUNICACIONES
DOCENTE CONTRATADO - CONTRATADO
Tiempo parcial por asignaturas (TPA)
Departamento Académico de Ingeniería - Sección Bioingeniería

Publicaciones

Se encontraron 16 publicaciones

SALAZAR, I. F.(2021). A CNN-based algorithm for selecting tree-of-interest images acquired by UAV. En 2021 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT). (pp. 1 - 6). IEEE.
SALAZAR, I. F.(2021). A neural anisotropic view of underspecification in deep learning. En Workshop of Robust and reliable machine learning in the real world at ICLR 2021. (pp. 1 - 11). International Conference on Learning Representations (ICLR).
SALAZAR, I. F.; JUAREZ, J. I.; LAVARELLO, R. J.(2024). Adversarial Training for Ultrasound Beamforming in Out-of-Distribution Scenarios. En 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS). IEEE. Recuperado de: https://ieeexplore.ieee.org/abstract/document/10793988
SALAZAR, I. F.(2019). An algorithm for plant disease visual symptom detection in digital images based on superpixels. International Journal on Advanced Science, Engineering and Information Technology. Volumen: 9. (pp. 194 - 203).
SALAZAR, I. F.(2019). An image processing method to automatically identify Avocado leaf state. En Symposium on Image, Signal Processing and Artificial Vision (STSIVA). (pp. 1 - 5). IEEE.
SALAZAR, I. F.(2021). Automatic Leaf Segmentation from Images Taken Under Uncontrolled Conditions Using Convolutional Neural Networks. En 5th Brazilian Technology Symposium. (pp. 277 - 285). Springer, Cham.
MARIN, R. E. J.; SALAZAR, I. F.; LAVARELLO, R. J.(2024). Deep Learning for Ultrasound Attenuation Coefficient Estimation. En 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS). IEEE. Recuperado de: https://ieeexplore.ieee.org/abstract/document/10793496
Ventura, H.; Quevedo, J.; SALAZAR, I. F.; Armas-Alvarado, M.; Adanaque-Infante, L.; RUBIO, R. E.(2025). Deep Neural Network Assisted Microfluidic pH Sensor. IEEE sensors journal.