Búsqueda avanzada

CESAR ALBERTO CARRANZA DE LA CRUZ

CESAR ALBERTO CARRANZA DE LA CRUZ

CESAR ALBERTO CARRANZA DE LA CRUZ

Doctor of Philosophy in Engineering, UNIVERSITY OF NEW MEXICO

Ver todos los grados

Master of Science in Computer Engineering (UNIVERSITY OF NEW MEXICO)
Maestro en Ciencias en Ciencias de la Computación (Centro de investigación científica y de educación superior de ensenada BAJA CALIFORNIA)

Ingeniero Electrónico
DOCENTE ORDINARIO - PRINCIPAL
Docente a tiempo completo (DTC)
Departamento Académico Ingeniería - Sección Electricidad y Electrónica

Publicaciones

Se encontraron 20 publicaciones

CARRANZA, C. A.(2021). Multi-camera Acquisition System for Virtual Model Generation with Underwater Photogrammetry. En OCEANS 2021. (pp. 1 - 6). SAN DIEGO. IEEE. Recuperado de: https://ieeexplore.ieee.org/document/9705932
CARRANZA, C. A.(2020). Retroalimentación y autoaprendizaje en estudiantes de ingeniería a través de la plataforma Lab-Cloud. En Cuadernos de Innovación en la Docencia Universitaria PUCP - 2020 . LIMA. PUCP.
CARRANZA, C. A.; Llamocca, D.; Pattichis, M.(2020). Fast and Scalable 2D Convolutions and Cross-correlations for Processing Image Databases and Videos on CPUs. En 2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). (pp. 70 - 73). ALBUQUERQUE. IEEE. Recuperado de: https://ieeexplore.ieee.org/document/9094602
CARRANZA, C. A.(2018). Fast and Parallel Computation of the Discrete Periodic Radon Transform on GPUs, Multicore CPUs and FPGAs. En 25th IEEE International Conference on Image Processing. (pp. 4158 - 4162). IEEE. Recuperado de: https://ieeexplore.ieee.org/document/8451751
CARRANZA, C. A.(2018). Efficient GPU-based implementation of the median filter based on a multi-pixel-per-thread framework. En 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI). (pp. 121 - 124). IEEE. Recuperado de: https://ieeexplore.ieee.org/document/8470318
CARRANZA, C. A.; Llamocca, D.; Pattichis, M.(2017). Fast 2d convolutions and cross-correlations using scalable architectures. IEEE Transactions on Image Processing. Volumen: 26. (pp. 2230 - 2245). Recuperado de: http://ieeexplore.ieee.org/document/7872445
CARRANZA, C. A.(2016). Fast and Scalable Architectures and Algorithms for the Computation of the Forward and Inverse Discrete Periodic Radon Transform with Applications to 2D Convolutions and Cross-Correlations. ELECTRICAL AND COMPUTER ENGINEERING ETDS - UNM. Volumen: 44. Recuperado de: https://digitalrepository.unm.edu/ece_etds/44
CARRANZA, C. A.; LLAMOCCA, D.; PATTICHIS, M.(2016). Fast and Scalable Computation of the Forward and Inverse Discrete Periodic Radon Transform. IEEE TRANSACTIONS ON Image Processing. Volumen: 25. Recuperado de: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7331285&isnumber=4358840